Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Braz Oral Res ; 36: e097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830141

RESUMO

Titanium dioxide nanotubes (TiO2-nts) were incorporated into a glass ionomer cement (GIC) with improved mechanical properties and antibacterial activity. The aims of the present in vitro study were to define the elemental characterization, aluminum (Al) release rate, and initial working time for GIC reinforced with TiO2-nts, in an experimental caries model. TiO2-nts were incorporated into GIC powder components at 5% by weight, and compared with unblended GIC. Experimental approaches used energy-dispersive spectrometry (EDS), atomic absorption spectrophotometry (AAS), and brightness loss to define surface element properties, Al release rates, and initial working time, respectively. Statistical analysis was performed by 2-way ANOVA, Tukey's test, generalized linear models, and Student's t test (a = 0.05). EDS data analysis revealed that TiO2-nts incorporated into GIC had no significant impact on the typical elemental composition of GICs in an in vitro caries model. Regarding the demineralizing solution, GIC with TiO2-nt significantly decreased the Al release rate, compared with the control group (p < 0.0001). Moreover, TiO2-nt incorporated into GIC did not alter the initial working time of the material (p > 0.05). These findings add information to our scientific body of knowledge concerning the potential impact of TiO2-nt on the performance of conventional GICs.


Assuntos
Cimentos de Ionômeros de Vidro , Nanotubos , Alumínio , Cimentos de Ionômeros de Vidro/química , Humanos , Teste de Materiais , Titânio
2.
J Proteomics ; 263: 104616, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595054

RESUMO

The prevalence of obesity has increased significantly worldwide. Therefore, this study aimed to evaluate the influence of obesity on the proteomic profile of periodontal ligament (PDL) tissues of rat first maxillary molars (1 M) submitted to orthodontic tooth movement (OTM). Ten Holtzman rats were distributed into two groups (n = 5): the M group (OTM), and the OM group (obesity induction plus OTM). Obesity was induced by a high-fat diet for the entire experimental periods After that period, the animals were euthanized and the hemimaxillae removed and processed for laser capture microdissection of the PDL tissues of the 1 M. Peptide extracts were obtained and analyzed by LC-MS/MS. Data are available via ProteomeXchange with identifier PXD033647. Out of the 109 proteins with differential abundance, 49 were identified in the OM group, including Vinculin, Cathepsin D, and Osteopontin, which were selected for in situ localization by immunohistochemistry analysis (IHC). Overall, Gene Ontology (GO) analysis indicated that enriched proteins were related to the GO component cellular category. IHC validated the trends for selected proteins. Our study highlights the differences in the PDL proteome profiling of healthy and obese subjects undergoing OTM. These findings may provide valuable information needed to better understand the mechanisms involved in tissue remodeling in obese patients submitted to orthodontic treatment. SIGNIFICANCE: The prevalence of obesity is increasing worldwide. Emerging findings in the field of dentistry suggest that obesity influences the tissues around the teeth, especially those in the periodontal ligament. Therefore, evaluation of the effect of obesity on periodontal tissues remodeling during orthodontic tooth movement is a relevant research topic. To our knowledge, this is the first study to evaluate proteomic changes in periodontal ligament tissue in response to the association between orthodontic tooth movement and obesity. Our study identified a novel protein profile associated with obesity by using laser microdissection and proteomic analysis, providing new information to increase understanding of the mechanisms involved in obese patients undergoing orthodontic treatment which can lead to a more personalized orthodontic treatment approach.


Assuntos
Obesidade , Ligamento Periodontal , Proteoma , Técnicas de Movimentação Dentária , Animais , Fenômenos Biomecânicos/fisiologia , Cromatografia Líquida , Humanos , Obesidade/metabolismo , Osteoclastos , Ligamento Periodontal/metabolismo , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
3.
J Periodontal Res ; 57(3): 545-557, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35246839

RESUMO

BACKGROUND AND OBJECTIVES: Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS: Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS: Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION: Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/patologia , Animais , Obesidade/complicações , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Proteoma , Proteômica , Ratos , Ratos Wistar
4.
Braz. oral res. (Online) ; 36: e097, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1384189

RESUMO

Abstract Titanium dioxide nanotubes (TiO2-nts) were incorporated into a glass ionomer cement (GIC) with improved mechanical properties and antibacterial activity. The aims of the present in vitro study were to define the elemental characterization, aluminum (Al) release rate, and initial working time for GIC reinforced with TiO2-nts, in an experimental caries model. TiO2-nts were incorporated into GIC powder components at 5% by weight, and compared with unblended GIC. Experimental approaches used energy-dispersive spectrometry (EDS), atomic absorption spectrophotometry (AAS), and brightness loss to define surface element properties, Al release rates, and initial working time, respectively. Statistical analysis was performed by 2-way ANOVA, Tukey's test, generalized linear models, and Student's t test (a = 0.05). EDS data analysis revealed that TiO2-nts incorporated into GIC had no significant impact on the typical elemental composition of GICs in an in vitro caries model. Regarding the demineralizing solution, GIC with TiO2-nt significantly decreased the Al release rate, compared with the control group (p < 0.0001). Moreover, TiO2-nt incorporated into GIC did not alter the initial working time of the material (p > 0.05). These findings add information to our scientific body of knowledge concerning the potential impact of TiO2-nt on the performance of conventional GICs.

5.
Braz. j. oral sci ; 20: e211654, jan.-dez. 2021. ilus
Artigo em Inglês | BBO - Odontologia, LILACS | ID: biblio-1254524

RESUMO

Grade C periodontitis in youngers is characterized by a severe form of periodontitis, and IL10 rs6667202 single nucleotide polymorphism (SNP) has been described as an important feature in this disease etiology. Aim: This study aimed to evaluate, in vivo, the functionality of IL10 rs6667202 SNP on IL-10 gingival fluid levels. Methods: Thirty patients with Perio4C were selected, 15 with the IL10 AA genotype (rs6667202) and 15 with AC/CC genotypes. The gingival fluid was collected from two sites with probing depth ≥ 7 mm and bleeding on probing, and two healthy sites. The IL-10 concentration was determined by Luminex/MAGpix platform. Results: In deep pockets, the IL10 AA genotype presented a lower concentration of IL-10 when compared with AC or CC genotypes (p<0.05). In shallow pockets, no difference between groups was seen (p>0.05). Conclusion: IL10 rs6667202 SNP decreases the production of IL-10 in crevicular fluid, potentially affecting this disease progression


Assuntos
Humanos , Masculino , Feminino , Periodontite Agressiva , Interleucina-10 , Polimorfismo de Nucleotídeo Único
6.
Braz Oral Res ; 35: e062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133579

RESUMO

This in vitro study evaluated the impact of TiO2 nanotubes (n-TiO2) incorporated into glass ionomer cement (GIC) on Streptococcus mutans (S. mutans) characteristics at cellular and molecular levels. n-TiO2, synthesized by the alkaline method (20 nm in size), was added to Ketac Molar EasyMix® at 0%, 3%, 5%, and 7% by weight. S. mutans strains were cultured on GIC disks with addition or not of n-TiO2 for 1, 3, and 7 days and the following parameters were assessed: inhibition halo (mm) (n=3/group); cell viability (live/dead) (n=5/group); cell morphology (SEM) (n=3/group); and gene expression by real-time PCR (vicR, covR, gtfB, gtfC, and gtfD) (n=6/group). The data were analyzed by the Kruskal-Wallis test, repeated-measures ANOVA or two-way ANOVA, and Tukey's and Dunn's post-hoc tests (α=0.05). The agar diffusion test showed a higher antibacterial property for 5% n-TiO2 compared with 3% and 7% (p<0.05) with no effect of time (1, 3, and 7 days). The cell number was significantly affected by all n-TiO2 groups, while viability was mostly affected by 3% and 5% n-TiO2, which also affected cell morphology and organization. Real-time PCR demonstrated that n-TiO2 reduced the expression of covR when compared with GIC with no n-TiO2 (p<0.05), with no effect of time, except for 3% n-TiO2 on vicR expression. Within-group and between-group analyses revealed n-TiO2 did not affect mRNA levels of gtfB, gtfC, and gtfD (p>0.05). Incorporation of n-TiO2 at 3% and 5% potentially affected S. mutans viability and the expression of key genes for bacterial survival and growth, improving the anticariogenic properties of GIC.


Assuntos
Nanotubos , Streptococcus mutans , Cimentos de Ionômeros de Vidro/farmacologia , Teste de Materiais , Titânio , Virulência
7.
Sci Rep ; 11(1): 1357, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446688

RESUMO

Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case-control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their offspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6-12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child's microbiome, affecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter-bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome's resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their offspring and the early acquisition of periodontitis-related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.


Assuntos
Periodontite Agressiva/microbiologia , Bactérias/classificação , Disbiose/microbiologia , Microbiota , Adolescente , Adulto , Bactérias/genética , Criança , Feminino , Humanos
8.
Mater Sci Eng C Mater Biol Appl ; 119: 111638, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321676

RESUMO

Different crystalline phases in sputtered TiO2 films were tailored to determine their surface and electrochemical properties, protein adsorption and apatite layer formation on titanium-based implant material. Deposition conditions of two TiO2 crystalline phases (anatase and rutile) were established and then grown on commercially pure titanium (cpTi) by magnetron sputtering to obtain the following groups: A-TiO2 (anatase), M-TiO2 (anatase and rutile mixture), R-TiO2 (rutile). Non-treated commercially pure titanium (cpTi) was used as a control. Surfaces characterization included: chemical composition, topography, crystalline phase and surface free energy (SFE). Electrochemical tests were conducted using simulated body fluid (SBF). Albumin adsorption was measured by bicinchoninic acid method. Hydroxyapatite (HA) precipitation was evaluated after 28 days of immersion in SBF. MC3T3-E1 cell adhesion, morphology and spreading onto the experimental surfaces were evaluated by scanning electron microscopy. Sputtering treatment modified cpTi topography by increasing its surface roughness. CpTi and M-TiO2 groups presented the greatest SFE. In general, TiO2 films displayed improved electrochemical behavior compared to cpTi, with M-TiO2 featuring the highest polarization resistance. Rutile phase exhibited a greater influence on decreasing the current density and corrosion rate, while the presence of a bi-phasic polycrystalline condition displayed a more stable passive behavior. M-TiO2 featured increased albumin adsorption. HA morphology was dependent on the crystalline phase, being more evident in the bi-phasic group. Furthermore, M-TiO2 displayed normal cell adhesion and morphology. The combination of anatase and rutile structures to generate TiO2 films is a promising strategy to improve biomedical implants properties including greater corrosion protection, higher protein adsorption, bioactivity and non-cytotoxicity effect.


Assuntos
Próteses e Implantes , Titânio , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
9.
Braz. oral res. (Online) ; 35: e062, 2021. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1278591

RESUMO

Abstract This in vitro study evaluated the impact of TiO2 nanotubes (n-TiO2) incorporated into glass ionomer cement (GIC) on Streptococcus mutans (S. mutans) characteristics at cellular and molecular levels. n-TiO2, synthesized by the alkaline method (20 nm in size), was added to Ketac Molar EasyMix® at 0%, 3%, 5%, and 7% by weight. S. mutans strains were cultured on GIC disks with addition or not of n-TiO2 for 1, 3, and 7 days and the following parameters were assessed: inhibition halo (mm) (n=3/group); cell viability (live/dead) (n=5/group); cell morphology (SEM) (n=3/group); and gene expression by real-time PCR (vicR, covR, gtfB, gtfC, and gtfD) (n=6/group). The data were analyzed by the Kruskal-Wallis test, repeated-measures ANOVA or two-way ANOVA, and Tukey's and Dunn's post-hoc tests (α=0.05). The agar diffusion test showed a higher antibacterial property for 5% n-TiO2 compared with 3% and 7% (p<0.05) with no effect of time (1, 3, and 7 days). The cell number was significantly affected by all n-TiO2 groups, while viability was mostly affected by 3% and 5% n-TiO2, which also affected cell morphology and organization. Real-time PCR demonstrated that n-TiO2 reduced the expression of covR when compared with GIC with no n-TiO2 (p<0.05), with no effect of time, except for 3% n-TiO2 on vicR expression. Within-group and between-group analyses revealed n-TiO2 did not affect mRNA levels of gtfB, gtfC, and gtfD (p>0.05). Incorporation of n-TiO2 at 3% and 5% potentially affected S. mutans viability and the expression of key genes for bacterial survival and growth, improving the anticariogenic properties of GIC.


Assuntos
Streptococcus mutans , Nanotubos , Titânio , Virulência , Teste de Materiais , Cimentos de Ionômeros de Vidro/farmacologia
10.
J Appl Oral Sci ; 28: e20200242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33111882

RESUMO

BACKGROUND: Heterogeneous cell populations of osteo/cementoblastic (O/C) or fibroblastic phenotypes constitute the periodontal dental ligament (PDL). A better understanding of these PDL cell subpopulations is essential to propose regenerative approaches based on a sound biological rationale. OBJECTIVE: Our study aimed to clarify the differential transcriptome profile of PDL cells poised to differentiate into the O/C cell lineage. METHODOLOGY: To characterize periodontal-derived cells with distinct differentiation capacities, single-cell-derived clones were isolated from adult human PDL progenitor cells and their potential to differentiate into osteo/cementoblastic (O/C) phenotype (C-O clones) or fibroblastic phenotype (C-F clones) was assessed in vitro. The transcriptome profile of the clonal cell lines in standard medium cultivation was evaluated using next-generation sequencing technology (RNA-seq). Over 230 differentially expressed genes (DEG) were identified, in which C-O clones showed a higher number of upregulated genes (193) and 42 downregulated genes. RESULTS: The upregulated genes were associated with the Cadherin and Wnt signaling pathways as well as annotated biological processes, including "anatomical structure development" and "cell adhesion." Both transcriptome and RT-qPCR showed up-regulation of WNT2, WNT16, and WIF1 in C-O clones. CONCLUSIONS: This comprehensive transcriptomic assessment of human PDL progenitor cells revealed that expression of transcripts related to the biological process "anatomical structure development," Cadherin signaling, and Wnt signaling can identify PDL cells with a higher potential to commit to the O/C phenotype. A better understanding of these pathways and their function in O/C differentiation will help to improve protocols for periodontal regenerative therapies.


Assuntos
Cemento Dentário/citologia , Osteoblastos/citologia , Ligamento Periodontal/citologia , Transcriptoma , Adulto , Caderinas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Clonais , Humanos , Via de Sinalização Wnt
11.
Clin Oral Investig ; 24(4): 1421-1430, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31907625

RESUMO

OBJECTIVES: Studies have demonstrated that children from aggressive periodontitis (AgP) parents presented precocious alterations in their periodontal condition, and the use of chemical agents in association to plaque control could be useful to control these alterations. This study aimed to evaluate the effect of Triclosan toothpaste to modulate the clinical and subgingival condition in children from AgP parents. METHODS: Fifteen children from AgP parents and 15 from periodontally healthy parents were included in this crossover placebo study. Children were randomly allocated into triclosan or placebo therapy, using selected toothpaste for 45 days. After 15 days of wash-out, groups were crossed, changing the used toothpaste. Clinical examination and saliva, crevicular gingival fluid (GCF), and subgingival biofilm collection were performed at baseline and 45 days of each phase. GCF cytokines' levels were analyzed by Luminex/MAGpix platform and subgingival and salivary periodontal pathogens' levels by qPCR. RESULTS: At baseline, AgP group presented higher plaque index (PI), gingival index (GI), and bleeding on probing (BoP), higher Aggregatibacter actinomycetemcomitans (Aa) abundance in saliva and subgingival biofilm, and lower levels of INF-É£, IL-4, and IL-17 in GCF. Placebo therapy only reduced PI in both groups. Triclosan toothpaste reduced PI and GI in both groups. Triclosan promoted reduction of BoP and probing depth (PD), Aa salivary, and IL-1ß levels in AgP group. In health group, triclosan reduced INF-É£ and IL-4 concentration. CONCLUSION: Triclosan toothpaste demonstrated to be more effective than placebo toothpaste to control the periodontal condition in children from AgP parents, by reducing the BoP, PD, salivary Aa, and IL-1ß. CLINICAL RELEVANCE: Triclosan toothpaste can improve oral conditions in higher-risk population for AgP. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov with the identifier NCT03642353.


Assuntos
Placa Dentária/prevenção & controle , Cremes Dentais/uso terapêutico , Triclosan/uso terapêutico , Aggregatibacter actinomycetemcomitans , Periodontite Agressiva , Biofilmes , Criança , Estudos Cross-Over , Citocinas , Índice de Placa Dentária , Feminino , Líquido do Sulco Gengival/química , Humanos , Masculino , Índice Periodontal , Saliva
12.
J. appl. oral sci ; 28: e20200242, 2020. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1134786

RESUMO

Abstract Heterogeneous cell populations of osteo/cementoblastic (O/C) or fibroblastic phenotypes constitute the periodontal dental ligament (PDL). A better understanding of these PDL cell subpopulations is essential to propose regenerative approaches based on a sound biological rationale. Objective Our study aimed to clarify the differential transcriptome profile of PDL cells poised to differentiate into the O/C cell lineage. Methodology To characterize periodontal-derived cells with distinct differentiation capacities, single-cell-derived clones were isolated from adult human PDL progenitor cells and their potential to differentiate into osteo/cementoblastic (O/C) phenotype (C-O clones) or fibroblastic phenotype (C-F clones) was assessed in vitro. The transcriptome profile of the clonal cell lines in standard medium cultivation was evaluated using next-generation sequencing technology (RNA-seq). Over 230 differentially expressed genes (DEG) were identified, in which C-O clones showed a higher number of upregulated genes (193) and 42 downregulated genes. Results The upregulated genes were associated with the Cadherin and Wnt signaling pathways as well as annotated biological processes, including "anatomical structure development" and "cell adhesion." Both transcriptome and RT-qPCR showed up-regulation of WNT2, WNT16, and WIF1 in C-O clones. Conclusions This comprehensive transcriptomic assessment of human PDL progenitor cells revealed that expression of transcripts related to the biological process "anatomical structure development," Cadherin signaling, and Wnt signaling can identify PDL cells with a higher potential to commit to the O/C phenotype. A better understanding of these pathways and their function in O/C differentiation will help to improve protocols for periodontal regenerative therapies.


Assuntos
Humanos , Adulto , Osteoblastos/citologia , Ligamento Periodontal/cirurgia , Cemento Dentário/citologia , Caderinas/metabolismo , Diferenciação Celular , Células Cultivadas , Células Clonais , Transcriptoma
13.
Braz Oral Res ; 33: e058, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31432925

RESUMO

Cementum is the mineralized tissue covering the tooth root that functions in tooth attachment and post-eruptive adjustment of tooth position. It has been reported to be highly similar to bone in several respects but remains poorly understood in terms of development and regeneration. Here, we investigate whether cementocytes, the residing cells in cellular cementum, have the potential to be protagonist in cementum homeostasis, responding to endocrine signals and directing local cementum metabolism. Cells from healthy erupted human teeth were isolated using sequential collagenase/EDTA digestions, and maintained in standard cell culture conditions. A cementocyte-like cell line was cloned (HCY-23, for human cementocyte clone 23), which presented a cementocyte compatible gene expression signature, including the expression of dentin matrix protein 1 ( DMP1 ), sclerostin ( SOST ), and E11/gp38/podoplanin ( E11 ). In contrast, these cells did not express the odontoblast/dentin marker dentin sialoprotein ( DSPP ). HCY-23 cells produced mineral-like nodules in vitro under differentiation conditions, and were highly responsive to inorganic phosphate (Pi). Within the limits of the present study, it can be concluded that cementocytes are phosphate-responsive cells, and have the potential do play a key role in periodontal homeostasis and regeneration.


Assuntos
Técnicas de Cultura de Células/métodos , Cemento Dentário/citologia , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Análise de Variância , Proteínas Morfogenéticas Ósseas/análise , Proteínas Morfogenéticas Ósseas/genética , Linhagem Celular , Cemento Dentário/metabolismo , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Feminino , Imunofluorescência , Expressão Gênica , Marcadores Genéticos/genética , Humanos , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Dente Molar/citologia , Fosfatos/farmacologia , Fosfoproteínas/análise , Fosfoproteínas/genética , Sialoglicoproteínas/análise , Sialoglicoproteínas/genética , Fatores de Tempo , Adulto Jovem
14.
J Periodontol ; 90(1): 44-51, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030838

RESUMO

BACKGROUND: Aggressive periodontitis (AgP) is influenced by genetic factors. Recently, the single nucleotide polymorphisms (SNPs) rs1537415 (GLT6D1), rs6667202 (IL10), and rs1333048 (ANRIL) were associated with AgP in different European populations. However, these specific SNPs have not yet been determined in Brazilians. Therefore, this study investigated whether these SNPs previously associated with AgP could be replicated among Brazilians. METHODS: The SNPs rs1537415, rs6667202, and rs1333048 were genotyped using 5'-nuclease allelic discrimination assay in AgP (n = 200), chronic periodontitis (CP, n = 190), and healthy patients (H, n = 196). Differences in allele and genotype frequencies were analyzed using chi-square tests and stepwise logistic regression. RESULTS: The minor C allele of rs6667202 was less frequently detected in AgP patients (23.5%) when compared to non-AgP groups (H = 34.2% and CP = 30.3%; p < 0.01), making the SNP protective against AgP occurrence. Moreover, the final logistic model for AgP diagnosis included gender (p = 0.001) and the SNP rs6667202 (p < 0.001) as significant variables. The SNPs rs1537415 and rs1333048 did not show associations with AgP. CONCLUSION: Only the SNP rs6667202 was associated with AgP in a Brazilian population, being the minor C allele protective against AgP. Moreover, SNPs rs1333048 and rs1537415, previously associated with AgP in other population, was not validated to Brazilian population.


Assuntos
Periodontite Agressiva , Glicosiltransferases , Periodontite Agressiva/genética , Alelos , Biomarcadores , Brasil , Estudos de Casos e Controles , Genótipo , Glicosiltransferases/genética , Humanos , Interleucina-10 , Polimorfismo de Nucleotídeo Único
15.
Braz. oral res. (Online) ; 33: e058, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1019608

RESUMO

Abstract Cementum is the mineralized tissue covering the tooth root that functions in tooth attachment and post-eruptive adjustment of tooth position. It has been reported to be highly similar to bone in several respects but remains poorly understood in terms of development and regeneration. Here, we investigate whether cementocytes, the residing cells in cellular cementum, have the potential to be protagonist in cementum homeostasis, responding to endocrine signals and directing local cementum metabolism. Cells from healthy erupted human teeth were isolated using sequential collagenase/EDTA digestions, and maintained in standard cell culture conditions. A cementocyte-like cell line was cloned (HCY-23, for human cementocyte clone 23), which presented a cementocyte compatible gene expression signature, including the expression of dentin matrix protein 1 ( DMP1 ), sclerostin ( SOST ), and E11/gp38/podoplanin ( E11 ). In contrast, these cells did not express the odontoblast/dentin marker dentin sialoprotein ( DSPP ). HCY-23 cells produced mineral-like nodules in vitro under differentiation conditions, and were highly responsive to inorganic phosphate (Pi). Within the limits of the present study, it can be concluded that cementocytes are phosphate-responsive cells, and have the potential do play a key role in periodontal homeostasis and regeneration.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Adulto Jovem , Marcadores Genéticos/genética , Técnicas de Cultura de Células/métodos , Cemento Dentário/citologia , Fosfatos/farmacologia , Fosfoproteínas/análise , Fosfoproteínas/genética , Sialoglicoproteínas/análise , Sialoglicoproteínas/genética , Fatores de Tempo , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Expressão Gênica , Linhagem Celular , Análise de Variância , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Imunofluorescência , Proteínas Morfogenéticas Ósseas/análise , Proteínas Morfogenéticas Ósseas/genética , Cemento Dentário/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Dente Molar/citologia
16.
RGO (Porto Alegre) ; 65(3): 254-259, July-Sept. 2017. tab
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-896032

RESUMO

ABSTRACT Tissue engineering is a contemporary field of science, which aims to create conditions based on principles of cell and molecular biology, bioengineering and biomaterials to regenerate tissues. Mesenchymal stem cells present high proliferation rates and are able to differentiate into multilineages under certain conditions, suggesting that they have great potential to act in regeneration field. Tooth derived stem cells are a suitable alternative source of mesenchymal cells once they are easily accessible and have poor morbidity to the donor. Studies showed that they have been isolated and characterized from diverse tissues such as dental pulp, exfoliated deciduous teeth, periodontal ligament, gingiva, dental follicle and apical papilla. However studies show that there is heterogeneity among these populations and there is no standard method to select the most appropriate tooth derived stem cells for regenerative procedures. The aim of this review is to present the current perspective of the multiple types of tooth-derived stem cells and to discuss the basis for their use in periodontal tissue engineering.


RESUMO A engenharia de tecidos é um campo contemporâneo da ciência, que visa criar condições baseadas em princípios de biologia celular e molecular, bioengenharia e biomateriais para regenerar tecidos. As células tronco mesenquimais apresentam altas taxas de proliferação e são capazes de se diferenciar, sob certas condições, em multi-linhagens, sugerindo que elas têm grande potencial para atuar no campo da regeneração. As células tronco derivadas de tecidos dentais são uma fonte alternativa adequada de células mesenquimais uma vez que são de fácil acesso e têm baixa morbidade para o doador. Estudos demonstraram que elas já foram isoladas e caracterizadas a partir de diversos tecidos tais como polpa dentária, dentes decíduos esfoliados, ligamento periodontal, gengiva, folículo dental e papila apical. Entretanto, os estudos demonstram que há heterogeneidade entre essas populações e não existe um método padrão para selecionar as células-tronco dentais mais apropriadas para procedimentos regenerativos. O objetivo desta revisão é apresentar o conhecimento atual dos vários tipos de células-tronco derivadas de dentes e discutir as novas perspectivas para seu uso na engenharia de tecidos periodontais.

17.
Int J Biomater ; 2017: 7123919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611845

RESUMO

The aim of this study was to assess the performance of glass ionomer cement (GIC) added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w)] were incorporated into GIC's (Ketac Molar EasyMix™) powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS), surface roughness (SR), Knoop hardness (SH), fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM) composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α ≤ 0.05). Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC's physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

18.
Braz. oral res. (Online) ; 31: e17, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839523

RESUMO

Abstract Periodontitis develops as a result of a continuous interaction between host cells and subgingival pathogenic bacteria. The periodontium has a limited capacity for regeneration, probably due to changes in periodontal ligament stem cells (PDLSCs) phenotype. The aim of this study was to evaluate the effects of lipopolysaccharides from Porphyromonas gingivalis (PgLPS) on mesenchymal phenotype and osteoblast/cementoblast (O/C) potential of PDLSCs. PDLSCs were assessed for Toll-like receptor 2 (TLR2) expression by immunostaining technique. After, cells were exposed to PgLPS, and the following assays were carried out: (i) cell metabolic activity using MTS; (ii) gene expression for IL-1β, TNF-α and OCT-4 by real-time polymerase chain reaction (RT-qPCR); (iii) flow cytometry for STRO-1 and CD105, and (iv) osteogenic differentiation. PDLSCs were positive for TLR2. PgLPS promoted cell proliferation, produced IL-1β and TNF-α, and did not affect the expression of stem cell markers, STRO-1, CD105 and OCT-4. Under osteogenic condition, PDLSCs exposed to PgLPS showed a similar potential to differentiate toward osteoblast/cementoblast phenotype compared to control group as revealed by mineralized matrix deposition and levels of transcripts for RUNX2, ALP and OCN. These results provide evidence that PgLPS induces pro-inflammatory cytokines, but does not change the mesenchymal phenotype and osteoblast/cementoblast differentiation potential of PDLSCs.


Assuntos
Humanos , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Lipopolissacarídeos/toxicidade , Porphyromonas gingivalis , Células-Tronco Mesenquimais/efeitos dos fármacos , Fatores de Tempo , Expressão Gênica , Osteocalcina/análise , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fator de Necrose Tumoral alfa/análise , Estatísticas não Paramétricas , Proliferação de Células/efeitos dos fármacos , Fosfatase Alcalina/análise , Fator 3 de Transcrição de Octâmero/análise , Receptores Toll-Like/análise , Subunidade alfa 1 de Fator de Ligação ao Core/análise , Interleucina-1beta/análise , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Citometria de Fluxo
19.
Biointerphases ; 11(3): 031008, 2016 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-27514370

RESUMO

Biofunctionalized surfaces for implants are currently receiving much attention in the health care sector. Our aims were (1) to create bioactive Ti-coatings doped with Ca, P, Si, and Ag produced by microarc oxidation (MAO) to improve the surface properties of biomedical implants, (2) to investigate the TiO2 layer stability under wear and corrosion, and (3) to evaluate human mesenchymal stem cells (hMSCs) responses cultured on the modified surfaces. Tribocorrosion and cell experiments were performed following the MAO treatment. Samples were divided as a function of different Ca/P concentrations and treatment duration. Higher Ca concentration produced larger porous and harder coatings compared to the untreated group (p < 0.001), due to the presence of rutile structure. Free potentials experiments showed lower drops (-0.6 V) and higher coating lifetime during sliding for higher Ca concentration, whereas lower concentrations presented similar drops (-0.8 V) compared to an untreated group wherein the drop occurred immediately after the sliding started. MAO-treated surfaces improved the matrix formation and osteogenic gene expression levels of hMSCs. Higher Ca/P ratios and the addition of Ag nanoparticles into the oxide layer presented better surface properties, tribocorrosive behavior, and cell responses. MAO is a promising technique to enhance the biological, chemical, and mechanical properties of dental implant surfaces.


Assuntos
Materiais Revestidos Biocompatíveis , Propriedades de Superfície , Titânio , Corrosão , Humanos , Células-Tronco Mesenquimais/fisiologia , Próteses e Implantes
20.
Clin Oral Investig ; 20(9): 2539-2549, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26917493

RESUMO

OBJECTIVES: The objective of this study is to clinically evaluate the outcomes following treatment of single gingival recessions with either coronally advanced flap technique (CAF) alone or combined with a porcine collagen matrix graft (CM). MATERIALS AND METHODS: This is a randomized parallel design clinical trial, including forty patients with single Miller Class I or II gingival recession, with a depth ≥ 2 mm and located at upper canines or premolars. The patients were randomly assigned to receive either CAF or CAF + CM. The primary outcome variable was gingival recession reduction (Rec Red). RESULTS: Baseline recession depth was 3.14 ± 0.51 mm for CAF group and 3.16 ± 0.65 mm for CAF + CM group (p > 0.05). Both groups showed significant Rec Red (p < 0.05), up to 6 months. Rec Red for CAF + CM was 2.41 ± 0.73 mm and was 2.25 ± 0.50 mm for CAF alone (p > 0.05). Root coverage was 77.2 % in the CAF + CM group and 72.1 % in the CAF group (p > 0.05). Complete root coverage (CRC) was found in 40 % of the cases in the CAF + CM group and in 35 % of the sites treated with CAF. Keratinized tissue thickness (KTT) was 0.26 mm higher in CAF + CM group (p < 0.05). CONCLUSIONS: It can be concluded that CAF + CM does not provide a superior recession reduction when compared to CAF; however, it may offer a small gain in KTT after 6 months. CLINICAL RELEVANCE: CAF + CM can be suggested as a valid therapeutic option to achieve root coverage and some increase in soft tissue thickness after 6 months.


Assuntos
Colágeno/uso terapêutico , Tecido Conjuntivo/transplante , Retração Gengival/cirurgia , Retalhos Cirúrgicos , Animais , Materiais Biocompatíveis , Feminino , Humanos , Masculino , Método Simples-Cego , Suínos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...